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Abstract

A quantum analogue of the BRST algebra is given. The method is based on the construction
of a differential algebra of generalized quantum forms carrying a bigraduation. This is realized
over the base quantum space of a quantum vector bundle associated to a quantum principal bundle.
Using this approach, we introduce the quantum gauge, ghost and matter fields via connections and
sections. Imposing constraints on the curvatures leads to the quantum BRST transformations of
these fields. © 2000 Elsevier Science B.V. All rights reserved.
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Gauge theories of quantum groups have been investigated recently in many papers (see
[6]; and references therein). The main goal of these papers is to construct gauge theories in
the realm of noncommutative geometry by taking quantum groups as gauge groups.

Moreover, in the quantization procedure of usual gauge theories, one needs, besides the
classical fields, the ghost fields, and the corresponding quantized gauge theories are invariant
under the BRST transformations [1,8]. It is tempting to try and construct a quantum gauge
theory reflecting the fields and their BRST transformations present in the standard quantized
gauge theory. There has been a proposal to this problem [9]. Here, the gauge, ghost and
matter fields as well as the corresponding BRST transformations are introduced using the
bicovariant differential calculus on the quantum groupSUq(2).

In this paper we will approach this problem by an algebraic formulation as developed in
[3]. The basic idea is to perform a straightforward dualization of the fibre bundle structure of
ordinary gauge theories. Let us recall that ordinary gauge theories square naturally with fibre
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bundle theory. The gauge fields are represented by a connection on a locally trivial principal
bundle with the space–time as base and the gauge group as structure group, whereas the
matter fields are represented by sections on an associated vector bundle. The local gauge
transformations of the gauge and matter fields are introduced via the local trivializations.
To recast these notions in the context of noncommutative differential geometry, we shall
use quantum (noncommutative) bundles. Here, the structure group (gauge group) becomes
a quantum group which is a noncommutative Hopf algebra(A,1, ε, S), where1 is the
comultiplication,ε the counit, andS the antipode. The base becomes a quantum space–time
which is a noncommutative unital algebraB. The fibre becomes a leftA-comodule unital
algebra(V ,1L), where1L : V → A ⊗ V is the left coaction ofA on V (see [3], and
references therein).

Furthermore, in order to define the matter, gauge and ghost fields and to find the cor-
responding BRST transformations in this algebraic setting, we proceed as follows. First,
we recall that the fieldsXgn occurring in the quantization of classical gauge theories can
be indexed by two grades(n, g), wheren represents the degree of the field as ann-form
andg its ghost number. However, the exterior differentiald and the BRST operatorQ are
derivations in the graded sense (the grading is gr(X

g
n) = n+ g mod 2) acting on the space

of fieldsXgn such thatdXgn is of type(n+ 1, g) andQXgn is of type(n, g + 1). They satisfy
d2 = Q2 = dQ+ Qd = 0.

To translate this description at the algebraic level, we use a locally trivial quantum prin-
cipal bundleP(B,A) and its quantum associated vector bundleE(B, V,A). We also need
to construct over the base quantum spaceB a graded differential algebra whose elements
carry a bigraduation. To do this, we introduce two bimodules0(1,0) and0(0,1) over the base
B, and we define a first-order differential calculus(01, d̃) overB, where the bimodule01

is given by

01 = 0(1,0) ⊕ 0(0,1). (1)

d̃ : B → 01 is a linear map satisfying the Leibniz rule

d̃(ab) = (d̃a)b + a(d̃b), a, b ∈ B, (2)

and any elementρ ∈ 01 is of the form

ρ =
∑
k

akd̃bk, ak, bk ∈ B. (3)

Moreover, let(�(B) = ∑
n=0�

n(B), d̃)be the graded differential algebra built over(01, d̃)

[4]. Here�n(B) for n > 0 (�0(B) = B) is defined as a set spanned by the elements

ωn = (a0, a1, . . . , an) = a0 ⊗ d̃a1 ⊗ · · · ⊗ d̃an (4)

for any a0, a1, . . . , an ∈ B, where⊗ is the tensor product over the algebraB. We will
omit ⊗ in all formulas below. The product ofωn = (a0, a1, . . . , an) ∈ �n(B) and
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�m = (b0, b1, . . . , bm) ∈ �m(B) is defined by

ωnωm = (a0, a1, . . . , an−1, an, b0, b1, . . . , bm)

+
n−1∑
i=0

(−1)n−i (a0, a1, . . . , ai−1, aiai+1, ai+2, . . . , an, b0, b1, . . . , bm). (5)

This relation is associated to the right property of�(B) obtained by using (2) to pull the
elements ofB through the left.

The action ofd̃ on�(B) is defined by

d̃(a0, a1, . . . , an) = (1B, a0, a1, . . . , an), (6)

d̃(1B, a0, a1, . . . , an) = 0. (7)

These relations are equivalent to the requirements

d̃1B = 0, d̃2 = 0. (8)

However, the linear operator̃d satisfies the graded Leibniz rule with respect to the product
given by (5). The grading is introduced by gr(ωn) = n mod 2.

What is important to see in this construction is that in view of (1) and (3), we can write
d̃ acting onB as

d̃ = d +Q, (9)

whered : B → 0(1,0),Q : B → 0(0,1) are linear maps satisfying the Leibniz rule so that
(2) is also verified.

Therefore, we observe that the operatorsd andQ acting onB permit us to define a
bigrading for the elements of01 = 0(1,0)⊕0(0,1). We will say that the elements0(1,0) and
0(0,1) are of type (1,0) and (0,1), respectively. This can be used to put each part�n(B) of
the differential algebra�(B) in the form

�n(B) =
n∑
g=0

�(n−g,g)(B), n > 0. (10)

Indeed, inserting (9) into (4), we obtain

ωn =
n∑
g=0

ω(n−g,g) =
n∑
g=0

(a0, a1, . . . , an)(n−g,g), (11)

where each termω(n−g,g) = (a0, a1, . . . , an)(n−g,g) is given by

a0da1 · · · dan−gQan−g+1 · · · Qan

plus all other terms obtained by permutation of the operatorsd andQ. Thus we get the
decomposition (10), where�(n−g,g)(B) is spanned by the elementsω(n−g,g) characterized
by two grades. For example,

ω1 = (a0, a1) = a0da1 + a0Qa1 = ω(1,0) + ω(0,1) ∈ �1(B) ≡ 01,
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ω2 = (a0, a1, a2) = a0da1da2 + (a0da1Qa2 + a0Qa1da2)+ a0Qa1Qa2

= ω(2,0) + ω(1,1) + ω(0,2) ∈ �2(B) = �(2,0)(B)⊕�(1,1) ⊕�(0,2)(B).

Furthermore, let us define the product similar to that in (5) ofω(n−g,g) =
(a0, a1, . . . , an)(n−g,g) ∈ �(n−g,g)(B) and ω(m−g′,g′) = (b0, b1, . . . , bm)(m−g′,g′) ∈
�(m−g′,g′)(B) by

ω(n−g,g)ω(m−g′,g′) = (a0, a1 . . . , an−1, an, b0, b1, . . . , bm)(n+m−G,G)

+
n−1∑
i=0

(−1)n−i (a0, a1, . . . , ai−1, aiai+1, ai+2, . . . ,

an, b0, b1, . . . , bm)(n+m−G,G), (12)

whereG = g+ g′. We have 0≤ G ≤ n+m, since 0≤ g ≤ n and 0≤ g′ ≤ m. Notice the
consistency of (12) with the product given by (5). In fact, a simple calculation leads to

ωnωm =
n∑
g=0

m∑
g′=0

Nn,m,Gω(n−g,g)ω(m−g′,g′) (13)

with

Nn,m,G =




1/(G+ 1), 0 ≤ G ≤ min(n,m)− 1,

1/(min(n,m)+ 1), min(n,m) ≤ G ≤ max(n,m),

Nn,m,n+m−G, max(n,m)+ 1 ≤ G ≤ n+m.

Now we will extend the action of the linear operatorsd andQ to the whole of�(B), so
that the consistency with (9) is guaranteed. To this end, let us define the action ofd on
�(n−g,g)(B) (n > 0,0 ≤ g ≤ n) by

d(a0, a1, . . . , an)(n,0) = (1B, a0, a1, . . . , an)(n+1,0),

d(a0, a1, . . . , an)(n−g,g) = 1
2(1B, a0, a1, . . . , an)(n+1−g,g), 1 ≤ g ≤ n. (14)

Similarly we introduce the action ofQ by

Q(a0, a1, . . . , an)(n−g,g) = 1
2(1B, a0, a1, . . . , an)(n−g,g+1), 0 ≤ g ≤ n− 1,

Q(a0, a1, . . . , an)(0,n) = (1B, a0, a1, . . . , an)(0,n+1). (15)

According to (6) and (11), it is now easy to see that

d̃(a0, a1, . . . , an)= (1B, a0, a1, . . . , an) =
n+1∑
g=0

(1B, a0, a1, . . . , an)(n+1−g,g)

= (d +Q)

n∑
g=0

(a0, a1, . . . , an)(n−g,g)

= (d +Q)(a0, a1, . . . , an). (16)
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However in view ofd̃1B = 0, we have

d1B = 0, Q1B = 0. (17)

Therefore, using (14) and (15), we get

d2 = 0, Q2 = 0, (18)

and according tõd2 = (d +Q)2 = 0, we obtain

dQ+ Qd = 0. (19)

On the other hand, the linear operatorsd andQ acting on the spaces�(n−g,g)(B) satisfy the
graded Leibniz rule with respect to the product given by (12). The proof consists of a straight-
forward verification by using (12), (14) and (15). The grading is given by gr(ω(n−g,g)) = n

mod 2, so that the consistency with the graded Leibniz rule ofd̃ = d+Q is also guaranteed
by using (13).

So, we have constructed a differential algebra�(B) over the base quantum spaceB, and
the decomposition (10) permits us to see that the elementsω(n−g,g) of �(B) are supplied
with two grades. The graded derivatived(Q) increases the first (second) grade by one. This
is a direct consequence of (14) and (15). They satisfy the relations (18) and (19). Thus,
we have obtained a construction which has a resemblance with what happens in the usual
BRST formalism. Hereafter, we will call the elementsω(n−g,g) as generalized quantum
differential forms of type(n− g, g), where the first grade is the degree of this form and the
second one its ghost number. The graded derivativesd andQ play the role of the differential
and the BRST operator, respectively.

However, in order to reproduce the fields and their BRST transformations in this algebraic
formulation we need the notion of a connection on the quantum principal bundleP(B,A)

[3]. The latter is locally trivial, i.e. locally, it looks likeP = A ⊗ B, but globally, the
fibre bundle can be twisted through the local trivializations. Similarly, the quantum vector
bundleE(B, V,A) associated toP(B,A) locally looks likeE = V ⊗ B. As shown in
[3] and working in the local picture, from any local trivialization there arises a local gauge
transformation defined as a convolution invertible mapγ : A → B with γ (1A) = 1B , so
that a section ofE(B, V,A) defined as a mapσ : V → B transforms under the action of
γ asσ → γ ∗ σ , where∗ is the convolution product. Denoting bySn(E) the set of maps
V → �n(B), where�(B) = ∑

n=0�
n(B) is the graded differential algebra associated to

some first-order differential calculus(0, δ) overB, one defines the covariant derivative as
a linear mapD : S0(E) → S1(E) such thatDσ transforms underγ asDσ → γ ∗ Dσ .
Notice thatS0(E) represents the set of sections, since�0(B) = B. It has been established
that if a mapβ : A → 0 transforms underγ asβ → γ ∗ β ∗ γ−1 + γ ∗ δγ−1 then
the covariant derivative is given byD = δ + β∗. The mapβ is called the connection on
P(B,A). Moreover, to any connectionβ one can associate its curvatureF : A → �2(B)

defined asF = δβ+β ∗β and satisfying the Bianchi identityδF +β ∗F −F ∗β = 0. For
clarity, we recall some facts about the convolution product∗. If γ1, γ2 : A → B are two
linear maps, thenγ1 ∗ γ2 : A → B is defined asγ1 ∗ γ2 = m(γ1 ⊗ γ2)1, wherem is the
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product inB and1 the comultiplication inA. Then we haveγ1∗γ2(a) = ∑
kγ1(ak)γ2(bk),

since1(a) = ∑
kak ⊗bk. A convolution invertible mapγ : A → B is such thatγ ∗γ−1 =

γ−1∗γ = ηB ◦ε, whereγ−1 : A → B is a linear map,ηB the unit inB viewed as a map and
ε the counit inA. We can extend the convolution product to the product of mapsγ : A → B

andσ : V → B given as a mapγ ∗σ : V → B byγ ∗σ = m(γ ∗σ)1L, where1L is the left
coaction ofA onV . Then we haveγ ∗σ(v) = ∑

kγ (ak)σ (vk), since1L(v) = ∑
kak ⊗vk.

Similarly, we can defineβ ∗ σ : V → �1(B) by β ∗ σ = m′(β ⊗ σ)1L, wherem′ is
the product of0 = �1(B) with B. Finally, we define the convolution product of the maps
ωp : A → �p(B) andωq : A → �q(B) by ωp ∗ ωq = m′′(ωq ⊗ ωq)1, wherem′′ is the
product in the differential algebra�(B).

Now we are in a position to introduce the notions of quantum gauge, ghost and matter
fields and their BRST transformations corresponding to the fields and their BRST transfor-
mations occurring in usual quantized gauge theories. To this end, we consider the quantum
bundlesP(B,A) andE(B, V,A), where the base quantum spaceB is provided with the
graded differential algebra(�(B), d̃) built over(01, d̃) as we have introduced above. Let
β be a connection onP(B,A), then it can be put in the form

β = A0
1 + c1

0, (20)

whereA0
1 : A → 0(1,0) andc1

0 : A → 0(0,1) are the maps related to the fact thatβ(a) ∈
01 = 0(1,0) ⊕ 0(0,1) for anya ∈ B. This permits us to interpretA0

1 as the quantum gauge
field andc1

0 as the associated quantum ghost field, where the lower index denotes the degree
of the generalized quantum form and the upper one its ghost number. However, a section
σ : V → B ofE(B, V,A)may be interpreted as the quantum matter fieldψ . Furthermore,
the curvatureF : A → �2(B) associated toβ can also split into three parts corresponding
to the decomposition�2(B) = �(2,0)(B)⊕�(1,1)(B)⊕�(0,2)(B) given by (10), we have

F = F 0
2 + F 1

1 + F 2
0 . (21)

Inserting (20) and (21) into the structure equation

F = d̃β + β ∗ β, (22)

and collecting the terms in quantum form degree and ghost number, we obtain

F 0
2 = dA0

1 + A0
1 ∗ A0

1, (23)

F 1
1 = dc1

0 + QA0
1 + A0

1 ∗ c1
0 + c1

0 ∗ A0
1, (24)

F 2
0 = Qc1

0 + c1
0 ∗ c1

0. (25)

Similarly, the Bianchi identity

d̃F + β ∗ F − F ∗ β = 0 (26)

gives

dF0
2 + A0

1 ∗ F 0
2 − F 0

2 ∗ A0
1 = 0, (27)
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dF1
1 + QF0

2 + A0
1 ∗ F 1

1 − F 1
1 ∗ A0

1 + c1
0 ∗ F 0

2 − F 0
2 ∗ c1

0 = 0, (28)

dF2
0 + QF1

1 + A0
1 ∗ F 2

0 − F 2
0 ∗ A0

1 + c1
0 ∗ F 1

1 − F 1
1 ∗ c1

0 = 0, (29)

QF2
0 + c1

0 ∗ F 2
0 − F 2

0 ∗ c1
0 = 0. (30)

Now, in order to determine the quantum BRST transformations of the quantum fields
A0

1 andc1
0, we remark that the curvatureF has more components than required in anal-

ogy with the field content of usual gauge theories. Therefore, we impose the following
constraints:

F 1
1 = 0, F 2

0 = 0. (31)

Notice that these constraints are consistent with the Bianchi identity. The curvature becomes
F = F 0

2 which may be interpreted as the quantum field strength. It is given by (23) and
satisfies (27).

Inserting (31) into (24), (25) and (30), we obtain

QA0
1 = −dc1

0 − A0
1 ∗ c1

0 − c1
0 ∗ A0

1, Qc1
0 = −c1

0 ∗ c1
0,

QF0
2 = −c1

0 ∗ F 0
2 + F 0

2 ∗ c1
0. (32)

The nilpotency of the quantum BRST operatorQand its anticommuting with the differential
d are automatically implemented (Eqs. (18) and (19)).

Notice that these quantum BRST transformations simplify further if we considerA as
a matrix quantum group. In this caseA is generated by noncommuting matrix entries
T ab , where the matrixR controlling the noncommutativity of theT ab obeys the quantum
Yang–Baxter equation. Indeed, acting the quantum fields onT ab , we writeA0

1(T
a
b ) = Aab ,

c1
0(T

a
b ) = cab andF 0

2 (T
a
b ) = Fab and the quantum BRST transformations (32) become

QAab = −dcab − Aadc
d
b − cadA

d
b, Qcab = −cadcdb , QFab = −cadF db + Fad c

d
b , (33)

since1(T ab ) = T ad ⊗ T db .
Next, we have also to determine the quantum BRST transformation of the quantum matter

fieldψ . Here, we use the same procedure as above. First, we introduce the map

ϕ : V → 01 (34)

defined byϕ = d̃ψ + β ∗ ψ . We decompose thenϕ asϕ = ϕ0
1 + ϕ1

0. So, we obtain

ϕ0
1 = dψ + A0

1 ∗ ψ, (35)

ϕ1
0 = Qψ + c1

0 ∗ ψ. (36)

Eq. (35) gives the covariant derivative of the quantum matter field. While Eq. (36) by
imposing the constraintϕ1

0 = 0 gives

Qψ = −c1
0 ∗ ψ. (37)
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If we considerA as matrix quantum group andV as a quantum plane generated byT ab and
va , respectively, the quantum BRST transformation (37) simplifies further and becomes

Qψa = −cabψb, (38)

whereψa = ψ(va) and the left coaction ofA onV is given by1L(v
a) = T ab ⊗ vb.

To summarise, starting from a quantum principal bundle with connection and its quantum
associated vector bundle as introduced in [3], we have constructed the quantum BRST
algebra (Eqs. (32) and (37)). At this point, let us recall that in [9] the quantum BRST algebra
has been realized in the context of the bicovariant differential calculus by using a classical
space–time. In our treatment, we have considered a quantum space–time represented by
the base quantum space. In particular, the quantum BRST operator has been introduced
through a graded differential algebra (Eqs. (1)–(19)), and the quantum gauge field and its
corresponding quantum ghost have been described by the connection (Eq. (20)).

Finally, let us note that the constraints imposed on the curvature (Eq. (31)) correspond
to the same fact in the context of the superspace formalism of usual gauge theories [2].
However, in [5] the fields occurring in the topological Yang–Mills theory and their BRST
transformations are obtained in terms of an unconstrained superspace formalism (see also
[7]). This means that, contrary to what is done in usual Yang–Mills theory, all superfield
components of the supercurvature are not constrained. These lead to the introduction of the
superpartner of the gauge field and its associated ghost for ghost. The formalism described
here and without imposing the constraints (31) permits us also to realize the quantum
analogue of the fields in the topological Yang–Mills theory and their BRST transformations.
Indeed, we can interpretF 1

1 as the quantum superpartner of the quantum gauge fieldA0
1 and

F 2
0 as the quantum ghost for ghost ofF 1

1 . Then Eqs. (24), (25) and (28)–(30) determine the
quantum BRST transformations of the fields(A0

1, c
1
0, F

0
2 , F

1
1 , F

2
0 ).
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